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Abstract—There has recently been an increasing interest
in computationally-efficient learning methods for resource-
constrained applications, e.g., pruning, quantization and channel
gating. In this work, we advocate a holistic approach to jointly
train the backbone network and the channel gating which
can speed up subnet selection for a new task at the resource-
limited node. In particular, we develop a federated meta-learning
algorithm to jointly train good meta-initializations for both the
backbone networks and gating modules, by leveraging the model
similarity across learning tasks on different nodes. In this way,
the learnt meta-gating module effectively captures the important
filters of a good meta-backbone network, and a task-specific
conditional channel gated network can be quickly adapted
from the meta-initializations using data samples of the new
task. The convergence of the proposed federated meta-learning
algorithm is established under mild conditions. Experimental
results corroborate the effectiveness of our method in comparison
to related work.

I. INTRODUCTION

The last decade has witnessed an explosive boost in deep

learning, especially Deep Neural Networks (DNN), leading

to phenomenal successes in many artificial intelligence appli-

cations, e.g., speech recognition [1], image classification [2],

[3], object detection [4] and etc. Nevertheless, the intensive

requirements in computational power of deep learning hinder

its deployment in resource-constrained applications (e.g., edge

servers or robots [5]). This challenge has spurred significant

effort on computationally-efficient learning methods recently,

including weight quantization [6], [7], weight pruning [8],

[9], [10] and channel gating [11], [12], [13]. Notably, both

weight pruning and channel gating aim to effectively select

only a portion of model parameters, i.e., a sub-network, for

local computation (inference) with minimal performance loss,

through a sampling mask on either the weights directly, or the

channels.

Most aforementioned studies are afflicted with either exten-

sive training cost or unsatisfactory performance. Generally, the

learning of an effective subnet for a task requires substantial

pre-training on a large target dataset, which often takes place

in the powerful cloud datacenter [10]. Such a learning strategy,

however, may not be practical due to the concerns on cost

and privacy, because a significant amount of data need to

be transmitted from the nodes to the server. Note that some

recent works [14], [15] propose to quickly prune a randomly

initialized DNN, and then fine-tune the subnet for eliminating

the need of pre-training, which may however suffer from

Fig. 1: Illustration of the proposed framework MetaGater. Top: conventional learning of
conditional channel gated networks. Bottom: fast learning of conditional channel gated
networks via federated meta-learning of both backbone and gating module.

unsatisfactory performance and may not actually speed up

the learning, partially due to unstructured pruning [9]. Further,

since local datasets at different nodes often correspond to

different models [16], [17], [18], a global background model

would not suffice to guarantee universally satisfactory learning

performance across different tasks. Accordingly, the subnet

selection should be tailored towards individual tasks. Yet, most

existing studies [19], [13] consider a common background

model and require non-trivial re-training of masks with massive

training data when adapted to new tasks. In a nutshell, for
effective learning at resource-limited nodes, it is desirable for
the learning of subnets for each new task to be able to quickly
adapt with minimum training cost, akin to cognitive learning
by human beings.

To tackle these challenges, we propose MetaGater, a fast

learning framework for conditional channel gated networks

by leveraging model similarity of many tasks across nodes,

where the backbone network at each node (with a task) is

associated with a task-specific channel gating module. The

channel gating module can generate a data-dependent mask, i.e.,

a binary vector, for each layer in the backbone network, which
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dynamically selects a subset of filters to participate into the

computation conditioned on the data input, thereby improving

the computation efficiency. Since the learning tasks across

different nodes often share some similarity [20], [21], [22], we
advocate a federated meta-learning approach to jointly learn
good meta-initialization for both the backbone networks and
the channel gating modules, making use of the collaboration of

many nodes in a distributed manner. The learnt meta-backbone

network and the meta-gating module are transferred to a target

node for fast adaptation towards learning a new task, in a two-

stage procedure (as shown in Fig. 1). Since the meta-gating

module effectively captures the important filters of a good

meta-backbone network and hence the sparsity structure across

tasks, it can achieve the agile adaptability at different new

tasks by quickly learning a task-specific channel gated network

using new samples.

The main contributions can be summarized as follows.

(1) To achieve fast and adaptive learning of subnets on

resource-limited nodes, we propose MetaGater, a fast learning

framework of conditional channel gated networks via federated

meta-learning, where good meta-initializations for both the

backbone network and gating module are jointly trained by

leveraging knowledge from related tasks. Compared to meta-

learning the backbone network only, the joint meta-learning

of weights and sparsity structures ‘pays more attention’ to the

important weights selected by the meta-gating module. As a

result, a good ‘initial’ subset amendable for fast adaptation is

learnt and transferred to the target node for learning a new task.

The gating module is a critical design to ensure the adaptability

of the subnets because different new tasks may have different

sparse structures.

(2) We propose a regularization-based federated meta-

learning formulation to efficiently exploit the sparsity and

high-order information, by developing a nice integration of

accelerated proximal gradient descent with inexact solutions

to the local problems therein. Particularly, we use accelerated

gradient descent for the meta-backbone network and accelerated

proximal gradient descent for the meta-gating module, in the

same spirit as the Nesterov’s method [23]. By characterizing

and controlling the estimation error associated with the inexact

solutions, we establish the convergence of the proposed

federated meta-learning method for non-convex functions under

mild conditions, and show that an ε-first order stationary point

can be obtained in O(ε−1) communication rounds.

(3) We conduct extensive experiments to evaluate the

performance of MetaGater. Specifically, the experiments on

various datasets showcase that the proposed federated meta-

learning approach clearly outperforms the baselines in terms

of accuracy and efficiency. Since this study focuses on the

fast learning of subnets based on distributed learning, most

existing methods based on centralized pre-training on a large

target dataset cannot directly serve as the baseline. For a

fair comparison, we develop two new baselines, MetaSNIP

and MetaGraSP, by applying two state-of-the-art fast pruning

approaches SNIP [14] and GraSP [15] to prune the meta-

backbone network, respectively. Our experiments indicate that

MetaGater is able to quickly obtain a task-specific subnet with

higher accuracy, and achieves a larger diversity in the task-

model sparsity after fast adaptation, compared to MetaSNIP

and MetaGraSP. This implies that MetaGater can successfully

find the joint model of the meta-backbone network and meta-

gating module that is sensitive to changes in the tasks, such

that quick adaptation in the model parameters can lead to a

good task-specific channel gated network.

II. RELATED WORK

Federated meta-learning. Meta-learning is a promising

solution for fast learning, where one gradient-based algorithm

called MAML [24] has become a representative method.

MAML aims to learn a model initialization based on many

related tasks, such that fine-tuning from this initialization can

perform well on a new task with a few samples. Many works

have been proposed to understand [25], [26] and improve upon

MAML [27], [28].

The marriage of meta-learning and federated learning has

recently garnered much attention, giving rise to a new research

direction, namely federated meta-learning. In particular, the em-

pirical successes of such an integration have been corroborated

in [29], [30]. Recent work [31] establishes the convergence

of federated meta-learning for strongly convex functions and

investigates the impact of task similarity. Another very recent

work [32] studies the case of non-convex functions with

stochastic gradient descent. A different federated meta-learning

approach is proposed in [33], based on a proximal meta-

learning method with moreau envelopes. To our best knowledge,

going beyond the standard federated meta-learning methods,

this paper is the first to study the agile adaptability and
computational efficiency by leveraging federated meta-learning
to jointly learn the backbone network and the gating module,
which instinctively ‘pays’ more attention to the important
weights that are sensitive to changes in tasks. Further, we also

analyze the convergence performance with non-smooth loss

functions in this setting. More importantly, the federated meta-

learning approach proposed in this work clearly outperforms

the previous studies as shown in the experiments.

Channel gating and weight pruning. There has been

increasing interest in utilizing data-dependent channel gating

modules [34], [35], [36], [37] to improve the computational ef-

ficiency. Specifically, [12] proposes Gaternet to train a separate

gating network to select filters for each layer in the backbone

network. To increase the amount of conditional features actually

learned, a batch-shaping technique is introduced in [38] for

the gating module. [13] applies the channel gating module

to address the catastrophic forgetting in task-aware continual

learning, by predicting the current task in a set of pre-defined

tasks. The works in network pruning can be traced back to early

1990s [39], where sparsity enforcing terms (e.g., L0 and L1

norm) [40] and saliency criterions like weight sensitivity [41]

are widely used. Recently, using magnitude of weights [6] as

the criterion has achieved significant successes and become

a standard method. As it is difficult for unstructured pruning

methods to reduce the inference time on hardware due to
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Fig. 2: The channel gating module for a convolution layer.

the highly irregular sparsity patterns, many approaches based

on structured pruning [9], [42], [43] have been proposed to

prune weights grouped in regular shapes, such as channels
or kennels. Nevertheless, all these methods require expensive

prune-retrain cycles. To tackle this challenge, a fast pruning

method SNIP [14] is proposed to prune the initial network

in a single shot based on connection sensitivity, eliminating

the need of pre-training. And recently [15] introduces GraSP

based on the gradient norm and the Hessian, to preserve the

gradient flow during pruning.

Note that an independent and concurrent work [44] also

proposes to utilize meta-learning for rapid structural pruning

of neural networks. We highlight the main differences below:

1) [44] relies on a centralized meta-learning method where the

nodes are required to submit data to a central platform, whereas

we consider a more realistic distributed setup and propose a

new federated meta-learning approach for joint training of

the backbone networks and channel gating modules. 2) [44]

takes a stochastic approach and learns a task-specific Bernoulli

distribution for mask generation, which however could possibly

generate masks that lead to significant performance degradation.

In contrast, we develop a deterministic approach by learning

a task-specific channel gating module, and also carry out a

thorough convergence analysis of the proposed federated meta-

learning algorithm.

III. PROBLEM FORMULATION AND METHODOLOGY

A. Basic setting

We consider a general setting where there are a set S of N
nodes, each node i with a local dataset Di, for pre-training

via federated meta-learning, and a target node 0 with a new

learning task. For the backbone network at each node, we

introduce a task-specific channel gating module.

Backbone network. For a node i ∈ S, let θ̃i denote the

parameters for the backbone network (e.g., CNN) with J
convolutional layers, which serves as the main model that

extracts features from the data input and makes predictions.

Channel gating module. Let φ̃i denote the parameters for

the channel gating module Qi = [Q1
i , ..., Q

J
i ] at node i. As

depicted in Fig. 2, let oj ∈ R
cj

in
,a,b and oj+1 ∈ R

cjout,a,b be

the input and output feature maps of the j-th convolutional

layer in the backbone network, respectively. Conditioned on

the input feature map oj , the layer-wise channel gating module

Qj
i generates a channel mask vector with binary elements, to

determine which channels should be activated for the given

input. As a result, a sparse feature map ôj+1, instead of oj+1,

is forwarded to the next layer, only with the channels activated

by the gating module Qj
i , i.e.,

ôj+1 = Qj
i (o

j)� oj+1 (1)

where Qj
i (o

j) = [qj1, ..., q
j

cjout

], qjn ∈ {0, 1} and � represents

the channel-wise multiplication. Each gating module consists

of Multi-Layer Perception (MLP) with a single hidden layer

featuring 16 units, followed by a ReLU activation function.

To generate the binary mask, we utilize the binarization

function [45], and estimate the gradient via straight-through

estimator (STE) [46] for the forward and backward paths,

respectively.

Learning of task-specific channel gated networks. For a

target node 0 with a learning task, let L0(φ̃
0, θ̃0) denote the

empirical loss over the local dataset D0 = {(x0
k,y

0
k)}Kk=1:

L0(φ̃
0, θ̃0) � 1

|D0|
∑

(x0
k,y

0
k)∈D0

l(φ̃0, θ̃0; (x0
k,y

0
k)) (2)

for some standard loss l, e.g., cross-entropy loss. Then, the

joint learning of the backbone network and the channel

gating module can be formulated as the following regularized

optimization problem:

min
φ̃0,θ̃0

L0(φ̃
0, θ̃0) +

λ

2
‖φ̃0 − φ‖22 +

λ

2
‖θ̃0 − θ‖22 (3)

where λ is some constant penalty parameter, φ and θ are

some prior model parameters for the gating module and the

backbone network, respectively. Clearly, directly solving (3),

i.e., searching for the optimal task-specific conditional channel

gated network, may be time-consuming and possibly suffers

from poor performance if only a small local dataset is used

for training. Further, perhaps more importantly, the quality

of the regularizer plays an important role in controlling the

performance of learnt conditional channel gated network, in

the sense that the closer the prior parameters are to the task-

specific optimal parameters, the better the learning performance

is. This regularized learning problem is also intimately related

to biased regularized hypothesis transfer learning [28], which

has manifested its efficiency in many applications [47], [48].

Therefore, instead of directly solving (3) [12], [13], we take a
federated meta-learning approach, to learn more informative
prior regularizers φ and θ, such that a quick adaptation at
the target node through gradient descent can lead to a good
approximation of the optimal subnet.

B. Joint learning of meta-backbone network and meta-gating
module via federated meta-learning

To obtain a good prior regularizer for (3), we develop a new

federated meta-learning approach, not only to learn a meta-

backbone network but also to learn a meta-gating module,
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by distilling the knowledge from related tasks on a set of

nodes. More specifically, the set S of nodes participate in

federated meta-learning to jointly learn meta-models for both

backbone networks and channel gating modules, which are

then transferred via the cloud to the target node 0 for fast

adaptation. Intuitively, a good meta-model (φ, θ) should have

the following properties:

(1) For a new task, it is desirable for the meta-model to

be ‘close’ to its task-specific optimal backbone network and

gating module, such that the loss is minimized when solving a

local problem (3). In this way, the learnt meta-model implicitly

captures the way to quickly learn the optimal task-specific

channel gated network with local data across all nodes in S.

(2) Quick adaptation through a gradient descent update

may not suffice to obtain a sparse task-specific gating module.

Instead, it is more effective to start with a meta-gating module

with structured sparsity (which also serves as the initialization

of fast adaptation), for improved computational efficiency.

Therefore, the objective of federated meta-learning can be

mathematically formulated as follows:

min
φ,θ

F (φ, θ)=H(φ) +
1

N

N∑
i=1

min
φ̃i,θ̃i

Gi(φ̃
i, θ̃i) (4)

s.t. Gi(φ̃
i, θ̃i;φ, θ)=Li(φ̃

i, θ̃i) +
λ

2
‖φ̃i − φ‖22 +

λ

2
‖θ̃i − θ‖22,

where Li(φ̃
i, θ̃i) is the loss defined in a similar way with (2)

for node i, and H(·) is some sparsity enforcing function of the

meta-gating module, such as L1-norm and Group Lasso [49].

Compared to the gradient-based federated meta-learning meth-

ods [31], [32], such a regularization-based formulation can

fully leverage the higher-order information of (4), leading to

more informative meta-backbone networks and meta-gating

modules. The joint meta-learning here imposes an implicit

regularization on the backbone, in the sense that the important

weights selected by the meta-gating module should be ‘paid

more attention’ on and trained to be more sensitive for fine-

tuning, in contrast to only meta-learning the backbone. A good

‘initial’ subnet can be thus learnt to capture a useful inductive

bias from both sparsity structures and model weights across

different nodes, enabling fast and adaptive learning of task-

specific subnets on target nodes.

The next key question is how to efficiently solve problem (4)

in a distributed manner. To answer this question, a few key

challenges need to be tackled: 1) Computationally-efficient

methods usually lead to performance degradation, compared

with that of the entire backbone network. To guarantee the

performance of conditional channel gated networks after fast

adaptation, a better meta-backbone network is needed, given a

fixed communication budget (between the cloud and the nodes).

2) Generally, H(·) is non-smooth, rendering that the classical

gradient descent would not work well.

To address the above problems, we develop a new federated

meta-learning approach building on a nice integration with

accelerated proximal gradient descent [50], as summarized in

Alg. 1. In what follows, we highlight several key aspects in

our algorithm design.

(1) In general, it is computationally expensive to find a local

minimizer to problem (5) (in Alg. 1) at each node. Instead, we

run gradient descent for several steps to approximately solve

(5), for the case when Gi is smooth for a smooth local loss

Li. In this way, Alg. 1 would obtain a meta-model (φ, θ) such

that the conditional channel gated network, obtained after fast

adaptation via several gradient descent steps at each node, can

achieve good learning performance.

(2) Unlike MAML-based federated meta-learning meth-

ods where the meta-model is updated locally for com-

puting Hessian, the update of meta-models in Alg. 1 is

computed globally and as easy to implement as first-order

meta-learning algorithms, e.g., Reptile [27]. Particularly, let

(φ̃i∗
t , θ̃i∗t ) = argmin(φ̃i,θ̃i) Gi(φ̃

i
t, θ̃

i
t;φ

pr
t , θprt ). For the t-th

iterate (φpr
t , θprt ) of meta-model in Alg. 1, it can be shown [28]

that (φ̃i∗
t , θ̃i∗t ) satisfies:

λ(φpr
t − φ̃i∗

t ) =∇φpr
t
Gi(φ̃

i∗
t , θ̃i∗t ;φpr

t , θprt ),

λ(θprt − θ̃i∗t ) =∇θpr
t
Gi(φ̃

i∗
t , θ̃i∗t ;φpr

t , θprt ),

which indicate that the global updates of meta-model (step 9 in

Alg. 1) follow an approximate gradient direction with respect

to (w.r.t.) the meta-learning objective (4).

(3) Since the meta-learning objective F is non-smooth w.r.t.

φ, we apply proximal gradient descent for the global update

of the meta-gating module. More specifically, the proximal

operator [51] of function H is defined by

proxηH(v) = argmin
x

{
H(x) + ‖x− v‖22/(2η)

}
for η > 0. If H = 0, proxηH(v) = v. Hence, if v is a gradient

step as in step 9 of Alg. 1, proxηH(v) can be interpreted as

trading off minimizing H and being close to v.

(4) Since the global updates of meta-models indeed follow

an approximate gradient direction w.r.t (4) (gradient descent for

meta-backbone network and proximal gradient descent for meta-

gating module), we resort to a general acceleration technique

[50] for the global updates to improve the performance of

federated meta-learning. When βt = ηtαt, global updates of

meta-models fall into variants of the well-known Nesterov’s

method [23].

In a nutshell, to learn good meta-models for both backbone

and channel gating module, we provide a concerted design

of federated meta-learning from the formulation (4) to Alg.

1. Particularly, the formulation (4) appropriately exploits the

sparsity structures and the higher-order information, and its

special structural properties next advocate the nice integration

of accelerated proximal gradient descent in Alg. 1. Such a joint

design not only reduces the computation complexity, but also

leads to a better performance, as substantiated later by both

theoretic and experimental results.

C. Fast adaptation for learning a new task at target node

Based on the meta-initialization for the backbone network

φ and for the meta-gating module θ, the target node 0 is

able to quickly learn a task-specific conditional channel gated
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Algorithm 1 Joint federated meta-learning

1: Set initial models φag
0 = φ0 and θag0 = θ0;

2: for t = 1, 2, ..., T do
3: Update φpr

t = αtφt−1+(1−αt)φ
ag
t−1, θprt = αtθt−1+

(1− αt)θ
ag
t−1; Send φpr

t and θprt to the nodes;

4: for each node i ∈ S do
5: Update the backbone network and the gating

module using gradient descent to achieve an approximate

minimizer (φ̃i
t, θ̃

i
t) to the following problem

min
φ̃i,θ̃i

Gi(φ̃
i, θ̃i;φpr

t , θprt ), (5)

such that ‖∇Gi(φ̃
i
t, θ̃

i
t;φ

pr
t , θprt )‖2 ≤ ξt;

6: Send (φ̃i
t, θ̃

i
t) to the cloud;

7: Globally aggregate ∇φ,t = λ
N

∑N
i=1(φ

pr
t − φ̃i

t), and

∇θ,t =
λ
N

∑N
i=1(θ

pr
t − θ̃it);

8: Update global models

φt = proxηtH
(φt−1 − ηt∇φ,t) , θt = θt−1 − ηt∇θ,t;

φag
t = proxβtH

(φpr
t − βt∇φ,t) , θ

ag
t = θprt − βt∇θ,t.

9: Set φ ← φpr
T , θ ← θprT .

network. Different from the simultaneous updates of both

backbone networks and gating modules in federated meta-

learning, the gating module and the backbone network are

updated once sequentially, at the target node by following a

two-stage procedure using its local dataset D0:

Stage I: Fix the task-specific backbone network as the

meta-backbone network θ, and update the task-specific gating

module via one-step gradient descent from the meta-gating

module φ w.r.t. (3) using dataset D0. Note that φ has effectively

captured the important filters of a good meta-backbone network

by leveraging the knowledge among different nodes in S.

Therefore, one single gradient update from φ by incorporating

the local information is able to tune the gating module in

a way that important channels for the specific task can be

quickly selected, thus significantly reducing the network size

for updating.

Stage II: Given the adapted gating module φ̃0, which

determines the set of filters for local computation, we next

fine-tune the subnet via one-step gradient descent from the

corresponding subnet in the meta-backbone model θ, using

the local dataset D0. In this way, the training cost is further

reduced as only a part of the backbone network gets involved

in the single forward pass, even more efficient than fast-pruning

methods, e.g., SNIP where at least one forward pass needs to

perform on the entire backbone network.

In this way, a task-specific channel gated network can be

quickly obtained at the target node for efficient inference.

IV. THEORETICAL ANALYSIS

In this section, we present the convergence analysis of Alg.

1 for a general non-convex local loss function, with the same

objective in all previous federated meta-learning works (e.g.,

[31], [32], [33]).

First, a key observation here is that from the perspective

of convergence analysis, the updates of the meta-backbone

networks in step 9 of Alg. 1 are equivalent to the following

proximal gradient descent:

θt = proxηtH
(θt−1 − ηt∇θ,t),

θagt = proxβtH
(θprt − βt∇θ,t),

because H is a function only of the meta-gating module φ
and ∇θH(φ) = 0. Consequently, we can analyze the meta-

backbone network θ and the meta-gating module φ together,

and examine the convergence of Alg.1 w.r.t. w = (φ, θ). Let

wpr
t = (φpr

t , θprt ), wag
t = (φag

t , θagt ) and w̃i
t = (φ̃i

t, θ̃
i
t). The

step 9 in Alg. 1 is then equivalent to the following:

wt =proxηtH
(wt−1 − ηt∇w,t), (6)

wag
t =proxβtH

(wpr
t − βt∇w,t), (7)

where ∇w,t =
λ
N

∑N
i=1(w

pr
t − w̃i

t).
Next, it is important to characterize the structural properties

of F (w) where w̃i is also a function of w. For ease of

exposition, let G(w) = 1
N

∑N
i=1 minw̃i Gi(w̃

i;w). As is

standard, we make the following assumptions.

Assumption 1. The loss function Li is twice-differentiable and
ρ-smooth, i.e., ‖∇Li(w)−∇Li(w

′)‖ ≤ ρ‖w − w′‖.

Assumption 2. H(·) is a proper closed convex function, and
‖w‖ ≤ M . This implies that ‖proxcH(w − cg)‖ ≤ M for any
c > 0 and g.

It can be shown that Assumption 2 immediately holds for

L1-norm and Group Lasso with bounded domain [50]. In the

same spirit with [28], we have the following lemma:

Lemma 1. Suppose that Assumption 1 holds. For λ > ρ, G(w)
is λρ

λ+ρ -smooth w.r.t. w.

We aim to establish the convergence of Alg. 1 for finding a

first-order stationary point of F (w), which is defined as:

Definition 1. w is a first-order stationary point of F if 0 ∈
∂H(w) +∇G(w), where ∂H(·) denotes the subdifferential of
H(·).

Let Q(w, g, c) = 1
c [w−proxcH(w−cg)]. When g = ∇G(w),

Q(w, g, c) is generally called the gradient mapping at w [51].

Moreover, Q(w,∇G(w), c) = ∇G(w) if H(w) = 0. It has

been shown in [50] that ‖Q(w, g, c)‖2 can be used to quantify

the gap between w and the first-order stationary point of F , in

the sense that this optimality gap converges to 0 as the value

of ‖Q(w, g, c)‖2 vanishes. Therefore, in this work we seek to

establish the convergence of Alg. 1 in terms of an ε-first order

stationary point, i.e., ‖Q(w, g, c)‖2 ≤ ε.
As mentioned earlier, the global update direction ∇w,t is an

approximate gradient w.r.t. G. To show the convergence, we

first characterize this gradient estimation gap, which plays an

important role in quantifying the convergence error.
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Lemma 2. Suppose that Assumption 1 holds. For λ > ρ, the
following equality holds:

∇w,t = ∇wG(wpr
t ) + δt,

where ‖δt‖2 ≤ λ2ξt
(λ−ρ)2 .

For convenience, denote an auxiliary sequence

Γt =

{
1, t = 1,

(1− αt)Γt−1, t ≥ 2.

Let w∗ be the optimal solution to problem (4), i.e., F (w∗) =
minw F (w). We can have the following main theorem about

the convergence of Alg. 1.

Theorem 1. Suppose that Assumptions 1 and 2 hold. For any
t ≥ 1, let αt =

2
t+1 , βt <

λ+ρ
λρ and ηt satisfy:

αtηt ≤ βt,
αt

Γt

( 1

ηt
− 1

) ≥ αt+1

Γt+1

( 1

ηt+1
− 1

)
.

Let C = 24λρ
(λ+ρ)

(
1
η1

− 1
)
. Then, for λ > ρ, we have

min
t∈[1,T ]

‖Q(wpr
t ,∇wG(wpr

t ), βt)‖2 ≤ 24λ3ρ
∑T

t=1 ξt
T (λ+ ρ)(λ− ρ)2

+
24(λρ)2(‖w∗‖2 + 2M)

T (λ+ ρ)2
+

C‖w0 − w∗‖2
T 2(T + 1)

.

Theorem 1 indicates that the convergence error consists

of three terms, where the first term captures the impact of

inexact solutions to each local learning problem (5), and

the last two terms quickly converge to 0 in the faster rate

of O( 1
T ), compared with the rate of O( 1√

T
) in [28]. Let

ψ =
24λ3ρ

∑T
t=1 ξt

T (λ+ρ)(λ−ρ)2 . Clearly, if the accumulated local estimation

error, denoted as
∑T

t=1 ξt, is of o(T ), then ψ would diminish

eventually. In contrast, by allowing the same number of local

updates, the corresponding upper bound in the existing work

about federated meta-learning [33] only converges to a constant.

Besides, Alg. 1 can find an O(ε + ψ)-first order stationary

point in at most O(ε−1) communication rounds between the

cloud and the nodes, compared to the O(ε−3/2) communication

rounds for convergence in [32]. More importantly, different

from other works [31], the proposed algorithm here can

converge under mild conditions, without the general assumption

about model similarity across different nodes. This implies

a more general application of Alg. 1 in unbalanced and

heterogeneous local datasets.

V. EXPERIMENTS

A. Experimental setup

Datasets. In the experiments, we study the image classifi-

cation problem as the learning tasks on several widely used

datasets, MNIST, CIFAR-10, CIFAR-100 [52] and MiniIma-

genet [53]. To capture the model heterogeneity across different

tasks, we distribute the data among N = 20 tasks, and each

task contains data samples from only Z classes. We select 10

tasks randomly for each round in federated meta-training, and

10 target tasks for fast adaptation. Since a resource-limited

Fig. 3: The DNN architectures used in the experiments.

node often has only a small local dataset, we investigate

the performance of MetaGater under different sizes of local

datasets.

Models. As shown in Fig. 3, we study two network models:

1) model (a) is a four-layer CNN with three convolutional

layers followed by a fully connected layer, and the channel

gating module is introduced to the third convolutional layer;

2) model (b) is a seven-layer CNN with six convolutional

layers followed by a fully connected layer, and we introduce a

channel gating module with the fifth and sixth convolutional

layers, respectively. Each convolution layer is followed by

a ReLU activation layer. Two max pooling layers and one

average pooling layer are adopted to shrink the feature map

dimension. We study the cross-entropy loss and use Group

Lasso to enforce the sparsity of the channel gating module. Note

that we introduce the channel gating module only to the layers

near the output layer, aiming to 1) minimize the introduced

model overhead, and 2) preserve the more important features

in the layers near the input layer. In fact, we have also tried to

introduce the gating module only to the second convolutional

layer of model (a), and the testing accuracy degrades in this

case. Such a performance degradation makes sense as the low-

level features captured by the first few layers have more critical

impact on the overall performance, in contrast to the high-level

features in the last few layers.

To generate a binary mask, a straightforward way is to use

a binarization function, which utilizes a hard threshold to take

binary on/off decision. However, such a discrete function is non-

differential during back-propagation. A widely used solution is

straight-through estimator [46] where the incoming gradient is

equal to the outgoing gradient. To better estimate the gradient,

we use Gumbel Softmax trick [54]. Specifically, we utilize the

hard threshold during forward pass to generate binary masks

and the differential softmax function during back-propagation.

Note that, the temperature of the Gumbel Softmax is set to be

1 for all the experiments.

Parameter setup. We evaluate the performance under a

fixed number of communication rounds, i.e., T = 400. For

t-th round, the learning rate αt = 2
t+1 , and we choose

βt = αtηt = 1. Besides, λ = 0.2. During federated meta-

learning, we run gradient descent for one local update to
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Fig. 4: Convergence behavior (in terms of testing accuracy) of MetaGater, Per-FedAvg,
FedAvg on CIFAR-10 with model (a).

solve the local minimization problem (5) for each training

task. For fast adaptation at target nodes, we only run one-

step gradient descent to fine-tune both meta-backbone network

and meta-gating module. We evaluate the testing accuracy at

the target nodes, and repeat all the experiments for 5 times

to obtain the average performance. Due to the limitations of

resource-constrained nodes, the evaluation of federated learning

methods with large DNNs (e.g., ResNet-20 [2]) on large

datasets (e.g., ImageNet [55]) is highly challenging and requires

heavy machinery [56]. Hence, we study the performance of

MetaGater following the setups in standard federated learning,

and leave the study of large DNNs to future work.

B. Meta-initialization via federated meta-learning

To evaluate the performance of the proposed federated meta-

learning method, we consider two existing baseline algorithms,

i.e., the classical federated learning algorithm FedAvg [16]

and one state-of-the-art federated meta-learning approach Per-

FedAvg [32]. For a fair comparison, we first remove the channel

gating module, consider meta-learning of the backbone network,

and also update the output of FedAvg with one-step gradient

descent as in Per-FedAvg for testing at the target task. Note

that we do not use pFedMe [57] as a baseline for the following

reasons: (1) The performance of the global model therein is

worse than Per-FedAvg; (2) although the personalized models

can achieve better accuracy, it requires to test all personalized

models and pick the best one, which is clearly not suitable for

on-device learning.

As illustrated in Fig. 4, MetaGater clearly converges faster

than FedAvg and Per-FedAvg, which is important in federated

learning as the communication cost is a bottleneck in wireless

networks. Moreover, we have the following observations based

on Table I and II: (1) MetaGater achieves the best accuracy

performance among all the methods, corroborating the theoretic

results. (2) For learning the meta-backbone network only,

MetaGater achieves a much higher testing accuracy with less

training time compared with Per-FedAvg, even with only one-

step gradient update locally during the training process. Note

that the longer training time for Per-FedAvg is because it needs

to evaluate the local gradient for two times in one local update,

in order to approximate the gradient w.r.t. the meta-model. Such

a performance improvement firmly corroborates the benefits

of utilizing higher-order information of the meta-objective

function through proximal updates and accelerating the global

meta-model updates with momentum. (3) As expected, it takes

longer to jointly train the meta-backbone network and the

meta-gating module for MetaGater with gating, compared to

training MetaGater without gating. But the training time is still

comparable to that of Per-FedAvg, and this extra training time

is not important from an offline training perspective, because

the federated meta-learning could be done offline in the cloud

and we are more concerned with the learning performance at a

new task. More importantly, the structural sparsity offered by

the gating module can help to achieve the agile adaptability at

different new tasks.

C. Impact of channel gating modules

Next, compared with learning the meta-backbone network

only, what is the impact of jointly meta-learning the backbone
network and the channel sparsity structures? To answer this

question, we compare the fast adaptation performance at the

target tasks between (1) MetaGater without (w/o) channel

gating module and (2) MetaGater with (w/) channel gating

module. First, Table II indicates that at the cost of extra

training time to jointly meta-train the backbone network and

the gating module, MetaGater can achieve the agile adaptability

at different target tasks. Particularly, for the fast adaptation

performance shown in Table III, with channel gating module,

the target task is able to quickly obtain a more compact model

for efficient inference with only a slightly degradation in

the accuracy, compared with MetaGater w/o gating module.

Besides, as the model becomes deeper and the local datasets

become smaller, the benefits of using gating modules to

obtain a sparse model are more pronounced, in the sense

of reducing the computation cost at a resource-limited device.

Particularly, the accuracy gap between MetaGater w/ gating

and MetaGater w/o gating decreases, and MetaGater w/ gating

can even achieve a better accuracy compared to MetaGater

w/o gating. This is because the backbone network will become

relatively overparameterized, and the channel gating module

can accurately select the task-specific subnet with the data-

dependent important filters that lead to a better accuracy.

D. Performance of MetaGater

Since this study focuses on the fast learning of subnets

based on distributed learning, most existing methods based on

centralized pre-training on a large target dataset cannot directly

serve as a baseline without nontrivial modification. To fairly

evaluate the performance of MetaGater, we compare MetaGater

with the following approaches by pruning the same learnt meta-

backbone network (referred as MetaSNIP/MetaGraSP): we train

a meta-backbone network using MetaGater w/o gating module,
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TABLE I: Accuracy comparison for MetaGater, Per-FedAvg, FedAvg on MNIST and
CIFAR-10 using model (a) with one-step local update. Z is equal to 2 for both datasets.
The number of samples per node is in the range of [1165, 3834] for MNIST (20 tasks)
and [221, 2792] for CIFAR-10 (50 tasks). Clearly, MetaGater achieves the best accuracy
among all methods.

Dataset
(local dataset size)

Method Accuracy(%)
Training
time(s)

MNIST
(moderate)

FedAvg 98.78± 0.03 396
Per-FedAvg 99.05± 0.05 920

MetaGater w/o gating 99.2± 0.0599.2± 0.0599.2± 0.05 763

CIFAR-10
(moderate)

FedAvg 80.9± 1.2 1139
Per-FedAvg 82.5± 2.3 2056

MetaGater w/o gating 88.1± 2.088.1± 2.088.1± 2.0 1186
MetaGater w/ gating 87.5± 2.687.5± 2.687.5± 2.6 1960

TABLE II: Accuracy comparison for MetaGater, Per-FedAvg, FedAvg using model (b)
with one-step local update. Z is equal to 2 for CIFAR-10, 5 for CIFAR-100 and 20
for MiniImagenet. The number of samples per node is in the range of [221, 2792]
for moderate local datasets and [30, 100] for small local datasets. Clearly, MetaGater
achieves the best accuracy among all methods.

Dataset
(local dataset size)

Method Accuracy(%)
Training
time(s)

CIFAR-10
(moderate)

FedAvg 74.2± 1.2 1677
Per-FedAvg 76.8± 1.8 3098

MetaGater w/o gating 85.3± 2.185.3± 2.185.3± 2.1 1939
MetaGater w/ gating 85.1± 3.685.1± 3.685.1± 3.6 2558

CIFAR-10
(small)

FedAvg 58.7± 1.2 187
Per-FedAvg 60.5± 1.9 339

MetaGater w/o gating 78.6± 2.378.6± 2.378.6± 2.3 189
MetaGater w/ gating 78.4± 3.578.4± 3.578.4± 3.5 356

CIFAR-100
(small)

FedAvg 42.8± 1.1 192
Per-FedAvg 56.6± 1.6 367

MetaGater w/o gating 68.4± 2.168.4± 2.168.4± 2.1 208
MetaGater w/ gating 68.6± 4.568.6± 4.568.6± 4.5 399

MiniImagenet
(moderate)

FedAvg 49.0± 1.4 2675
Per-FedAvg 51.4± 1.8 3892

MetaGater w/o gating 55.2± 1.955.2± 1.955.2± 1.9 2775
MetaGater w/ gating 55.0± 2.155.0± 2.155.0± 2.1 3023

apply SNIP/GraSP to quickly obtain a sparse backbone network,

and then fine-tune it using one-step gradient descent.

It can be seen from Table III that MetaGater clearly

outperforms MetaSNIP and MetaGraSP in the following sense:

(1) MetaGater obtains a better subnet with higher accuracy, in

a similar speed with MetaSNIP; MetaGraSP takes longer time

because of the evaluation of Hessian. (2) After fast adaptation,

TABLE III: Fast adaptation performance comparison on various datasets. MetaGater can
achieve a better accuracy and a larger sparsity range. The learning time is the total time
for fast adaptation and inference at the target tasks.

Dataset
(size)

Method
Accuracy

(%)
Sparsity

(%)
Learning
time(s)

CIFAR-10
(moderate)

MetaGater w/o gating 85.3± 2.185.3± 2.185.3± 2.1 0 1.6
MetaSNIP 83.4± 3.4 23± 2.4 1.5
MetaGraSP 84.1± 3.8 23± 2.2 3.3

MetaGater w/ gating 85.1± 3.685.1± 3.685.1± 3.6 23± 3.7 1.4

CIFAR-10
(small)

MetaGater w/o gating 78.6± 2.378.6± 2.378.6± 2.3 0 0.56
MetaSNIP 76.7± 2.4 17± 1.3 0.55
MetaGraSP 76.2± 2.8 17± 2.0 1.17

MetaGater w/ gating 78.4± 3.578.4± 3.578.4± 3.5 17± 2.1 0.51

CIFAR-100
(small)

MetaGater w/o gating 68.4± 2.168.4± 2.168.4± 2.1 0 0.61
MetaSNIP 66.9± 3.7 21± 2.3 0.57
MetaGraSP 66.5± 3.4 21± 2.1 1.45

MetaGater w/ gating 68.6± 4.568.6± 4.568.6± 4.5 21± 3.6 0.52

MiniImagenet
(moderate)

MetaGater w/o gating 55.2± 1.955.2± 1.955.2± 1.9 0 4.4
MetaSNIP 51.8± 3.6 23± 2.5 4.4
MetaGraSP 52.1± 3.4 23± 2.1 7.6

MetaGater w/ gating 55.0± 2.155.0± 2.155.0± 2.1 23± 2.9 4.2

MetaGater exhibits a larger diversity of the achieved model

sparsity on different target tasks. This larger diversity implies

a better sensitivity of the learnt meta-gating module w.r.t. one-

step gradient descent, which enables the fast learning of the

task-specific channel gated network. The learning time in Table

III indicates the quick learning process of a new task, and the

channel-wise sparsity directly reduces the computation cost,

which clearly fulfils our ultimate objective to achieve efficient
learning of a new task at resource-limited edge devices, in the

sense that the device could learn a sparse model for efficient

inference after a quick training process. In a nutshell, the
experimental results indicate that the superior performance of
MetaGater in fact comes from not only meta-learning, but from
the novel idea of meta-learning the network sparsity structures
while meta-learning the weights. Consequently, MetaGater

directly learns a good sparse architecture with suitable weights

to capture the inductive bias for fast adaptation and efficient

inference, from the channel gated networks across different

tasks.

VI. CONCLUSION

In this work, we propose MetaGater, a fast learning frame-

work of conditional channel gated networks via federated meta-

learning, where good meta-initializations for both backbone

networks and gating modules are jointly learnt by leveraging

the model knowledge across learning tasks on different nodes.

As the meta-gating module effectively captures the important

filters of a good meta-backbone network and the structural

sparsity across tasks, it can achieve the agile adaptability at

different new tasks by quickly learning a task-specific subnet.

Particularly, we propose a concerted design of a regularization-

based federated meta-learning formulation and a new approach

based on a nice integration of accelerated proximal gradient

descent. We show that an ε-first order stationary point can

be obtained in at most O(ε−1) communication rounds for

non-convex functions. Extensive experiments corroborate the

effectiveness of MetaGater.
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